# HOW TO SIMPLIFY SIN4X+COS4X USING TRIGONOMETRICAL IDENTITIES?

\$sin^4x+cos^4x\$I should rewrite this expression into a new khung to plot the function.

Bạn đang xem: How to simplify sin4x+cos4x using trigonometrical identities?

eginalign& = (sin^2x)(sin^2x) - (cos^2x)(cos^2x) \& = (sin^2x)^2 - (cos^2x)^2 \& = (sin^2x - cos^2x)(sin^2x + cos^2x) \& = (sin^2x - cos^2x)(1) longrightarrow,= sin^2x - cos^2xendalign

Is that true?

eginalignsin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\&=1^2-frac12(2sin xcos x)^2\&=1-frac12sin^2 (2x)\&=1-frac12left(frac1-cos 4x2 ight)\&=frac34+frac14cos 4xendalign

Let \$\$displaystyle y=sin^4 x+cos^4 x = left(sin^2 x+cos^2 x ight)^2-2sin^2 xcdot cos^2 x = 1-frac12left(2sin xcdot cos x ight)^2\$\$

Now using \$\$ sin 2A = 2sin Acos A\$\$

So, we get \$\$displaystyle y=1-frac12sin^2 2x\$\$

Note that \$a^2 + b^2 = (a+b)^2 - 2ab\$

\$\$(sin^2 x)^2 + (cos^2 x)^2 = (sin^2 x + cos^2 x)^2 - 2sin^2 xcos^2 x =(sin^2 x + cos^2 x)^2 - 2(sin xcos x)^2 = \ 1 -frac sin^2 2x2\$\$

Note the following results:

\$\$ sin^2 x + cos^2 x = 1\$\$

\$\$ sin x cos x = fracsin 2x2\$\$

Expand in terms of complex exponentials.

\$\$sin^4 x + cos^4 x = left( frace^ix - e^-ix2i ight)^4 + left( frace^ix + e^-ix2 ight)^4\$\$

Notice that \$i^4 = +1\$, so we get

\$\$sin^4 x + cos^4 x = frac116 left( 2e^4ix + 2 e^-4ix + 12 ight)\$\$

where we use the relation \$(a+b)^4 = a^4 + 4 a^3 b + 6 a^2 b^2 + 4 ab^3 + b^4\$. The terms of the form \$a^3 b\$ và \$ab^3\$ all cancel by addition.

Xem thêm: Giải Task 2 Sgk Trang 18 Unit 1 Lớp 10 Writing (Trang 12 Sgk Tiếng Anh 10 Mới)

This leaves us with a final result:

\$\$sin^4 x + cos^4 x = frac416 left(frace^4ix + e^-4ix2 ight) + frac1216 = frac34 + frac14 cos 4x\$\$

mô tả
Cite
Follow
answered Sep 30, năm ngoái at 17:14
MuphridMuphrid
\$endgroup\$
1
\$egingroup\$
If you want khổng lồ express in functions of higher frequencies lượt thích this \$\$sum_k=0^N sin(kx) + cos(kx)\$\$ Then you can use the Fourier transform together with convolution theorem. This will work out for any sum of powers of cos và sin, even \$sin^666(x)\$.

nói qua
Cite
Follow
answered Sep 30, 2015 at 17:09