HOW TO SIMPLIFY SIN4X+COS4X USING TRIGONOMETRICAL IDENTITIES?

     
$sin^4x+cos^4x$I should rewrite this expression into a new khung to plot the function.

Bạn đang xem: How to simplify sin4x+cos4x using trigonometrical identities?

eginalign& = (sin^2x)(sin^2x) - (cos^2x)(cos^2x) \& = (sin^2x)^2 - (cos^2x)^2 \& = (sin^2x - cos^2x)(sin^2x + cos^2x) \& = (sin^2x - cos^2x)(1) longrightarrow,= sin^2x - cos^2xendalign

Is that true?


*

*

eginalignsin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\&=1^2-frac12(2sin xcos x)^2\&=1-frac12sin^2 (2x)\&=1-frac12left(frac1-cos 4x2 ight)\&=frac34+frac14cos 4xendalign


*

Let $$displaystyle y=sin^4 x+cos^4 x = left(sin^2 x+cos^2 x ight)^2-2sin^2 xcdot cos^2 x = 1-frac12left(2sin xcdot cos x ight)^2$$

Now using $$ sin 2A = 2sin Acos A$$

So, we get $$displaystyle y=1-frac12sin^2 2x$$


*

*

Note that $a^2 + b^2 = (a+b)^2 - 2ab$

$$(sin^2 x)^2 + (cos^2 x)^2 = (sin^2 x + cos^2 x)^2 - 2sin^2 xcos^2 x =(sin^2 x + cos^2 x)^2 - 2(sin xcos x)^2 = \ 1 -frac sin^2 2x2$$

Note the following results:

$$ sin^2 x + cos^2 x = 1$$

$$ sin x cos x = fracsin 2x2$$


Expand in terms of complex exponentials.

$$sin^4 x + cos^4 x = left( frace^ix - e^-ix2i ight)^4 + left( frace^ix + e^-ix2 ight)^4$$

Notice that $i^4 = +1$, so we get

$$sin^4 x + cos^4 x = frac116 left( 2e^4ix + 2 e^-4ix + 12 ight)$$

where we use the relation $(a+b)^4 = a^4 + 4 a^3 b + 6 a^2 b^2 + 4 ab^3 + b^4$. The terms of the form $a^3 b$ và $ab^3$ all cancel by addition.

Xem thêm: Giải Task 2 Sgk Trang 18 Unit 1 Lớp 10 Writing (Trang 12 Sgk Tiếng Anh 10 Mới)

This leaves us with a final result:

$$sin^4 x + cos^4 x = frac416 left(frace^4ix + e^-4ix2 ight) + frac1216 = frac34 + frac14 cos 4x$$


mô tả
Cite
Follow
answered Sep 30, năm ngoái at 17:14
MuphridMuphrid
19.1k11 gold badge2727 silver badges5757 bronze badges
$endgroup$
add a bình luận |
1
$egingroup$
If you want khổng lồ express in functions of higher frequencies lượt thích this $$sum_k=0^N sin(kx) + cos(kx)$$ Then you can use the Fourier transform together with convolution theorem. This will work out for any sum of powers of cos và sin, even $sin^666(x)$.


nói qua
Cite
Follow
answered Sep 30, 2015 at 17:09
ccevents.vnreadlerccevents.vnreadler
24.7k99 gold badges3333 silver badges8585 bronze badges
$endgroup$
showroom a comment |

You must log in to answer this question.


Not the answer you're looking for? Browse other questions tagged .
Featured on Meta
Linked
8
Deriving an expression for $cos^4 x + sin^4 x$
0
Find $int_0^2pi frac1sin^4x + cos^4x dx$.

Xem thêm: Trà Hoa Đậu Biếc Có Tác Dụng Gì ? Hoa Đậu Biếc Có Tác Dụng Gì


Related
1
Trigonometric Identities: $fracsin^2 heta1+cos heta=1-cos heta$
2
Simplifying second derivative using trigonometric identities
1
Simplify $-2sin(x)cos(x)-2cos(x)$
0
Simplify the expression and leave answer in terms of $sin x$ and/or $cos x$
0
How can we bound $fracsin( heta)cos( heta)cos( heta)$
1
Minimum value of $cos^2 heta-6sin heta cos heta+3sin^2 heta+2$
1
Transforming the equation $cot x -cos x = 0$ into the khung $cos x(1- sin x) = 0$
1
Simplify: $fracsin(3x-y)-sin(3y-x)cos(2x)+cos(2y) $
3
Simplify trigonometric expression using trigonometric identities
Hot Network Questions more hot questions

Question feed
Subscribe khổng lồ RSS
Question feed to lớn subscribe to this RSS feed, copy and paste this URL into your RSS reader.


ccevents.vnematics
Company
Stack Exchange Network
Site kiến thiết / hình ảnh sản phẩm © 2022 Stack Exchange Inc; user contributions licensed under CC BY-SA. Rev2022.12.21.43127


Your privacy

By clicking “Accept all cookies”, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy.