Closed
Chris"ssis but she gave me a horrible closed-form without proof. You may have a look here và here. My friend doesn"t know the closed-form either. Here is the problem:
$$int_0^pi/2fracsin^2xarctanleft(cos^2x ight)sin^4x+cos^4x,dx$$
Any idea? Any help would be appreciated. Thanks in advance.
Bạn đang xem: Closed


$ ewcommandal<1>eginalign#1endalign enewcommandImoperatornameIm$Result:
$$I = fracpi left<2 pi +log left(-4 sqrt17+13 sqrt2+8 sqrt2+13 ight)-4 an ^-1left(sqrtfrac1sqrt2-frac12+frac1sqrt2+1 ight) ight>8 sqrt2 \approx 0.299397.$$
The evaluation of this integral by hand is not as tedious as I thought at first. It turns out I had already considered this integral last week, in a different form.
First substitute $ an x = t$, as suggested by FDP in the comments. This gives$$I = int_0^infty dt fract^2 arctan left( frac11+t^2
ight)1+t^4.$$Now observe that$$alarctan left( frac11+t^2
ight) &= Im log(i + 1 + t^2) = Im left
Consider the integral$$J(a) = int_0^infty dx fracx^21+x^4 log(1+a x^2).$$We have $J(0) = 0$, and$$alJ"(a) &= int_0^infty dx fracx^4(1+x^4)(1+a x^2)\&= frac11+a^2 int_0^infty dx left< frac11+ a x^2 + fraca x^2 - 11+x^4
ight>\&= fracpi /21+a^2left
The result is$$J(a) = fracpi2 sqrt 2 left< log left(a+sqrt2 sqrta+1
ight)+2 arctanleft(sqrt2 sqrta+1
ight)
ight>$$After plugging in the limit và tedious simplification (see Appendix khổng lồ this answer), we obtain$$Im Jleft(frac1-i2
ight) = -fracpi2 sqrt2left\operatornamearccothleft
Putting everything together,$$alI &= frac pi 4 int_0^infty dt fract^21+t^4 + Im int_0^infty dt fract^2 logleft(1 + frac1-i2 t^2
ight)1+t^4\&= fracpi^28 sqrt 2 + Im Jleft(frac1-i2
ight)\&= fracpi2 sqrt2left frac pi 4-operatornamearccothleft
This is numerically equal to lớn the claimed result, which I obtained via a completely different route.
Xem thêm: Suy Nghĩ Về Vai Trò Của Văn Học Nghệ Thuật Trong Công Cuộc Đổi Mới
Throughout I have not worried explicitly about choosing the correct branch of $log$. If this led to lớn any mistakes, please point it out to lớn me.
AppendixHere I sketch how $Im Jleft(frac1-i2
ight)$ can be calculated. For example, consider the term$$Im logleft(1 + frac1-i2 + sqrt 2 sqrtfrac1-i2
ight) = Im logleft(frac 3 2 - frac i 2 + 2^1/4left(cos frac pi 8 - i sin frac pi 8
ight)
ight).$$Using the half-angle formulas for sine & cosine, we can write it as$$al-arctan left(frac1+ sqrt<4>2 sqrt2-sqrt23 + sqrt<4>2 sqrt2+sqrt2
ight) &= - arctanleft(frac2 sqrt5 sqrt2-7+17-2 sqrt2
ight)\&= - arctanleft
Xem thêm: Câu Đố “ Mẹ Vuông, Con Tròn, Mỗi Lứa Sòn Sòn, Đẻ 20 Đứa, Đáp Án Game Đố Vui Dân Gian 850 Câu
Moral: introduce a parameter in such a way that the integral with respect lớn the parameter becomes simple, and use ccevents.vnematica khổng lồ simplify the kết thúc result.