Find The Factors Of A 2 B C B 2 C A C 2 A B 2B 2C

     

$$fraca^2-b^2c+fracb^2-c^2a+fracc^2+2a^2bgeq frac2ab-2bc+3cab$$

I have tried that :

$ageq bgeq cRightarrow fraca^2-b^2cgeq 0;fracb^2-c^2ageq 0;frac3a^2bgeq frac3acb$

$fraca^2-b^2c+fracb^2-c^2a+fracc^2+2a^2bgeq frac2ab-2bc+3cabLeftrightarrow fracc^2-a^2b+frac3a^2bgeq 2(a-c)+frac3acbLeftrightarrow frac(c-a)(c+a)bgeq 2(a-c)Leftrightarrow c+ageq -2b$ !!??


share
Cite
Follow
edited Dec 8, 2013 at 5:54
*

Micah
36.7k1515 gold badges8181 silver badges127127 bronze badges
asked Dec 8, 2013 at 3:17
*

Lê Tấn KhangLê Tấn Khang
1,10355 silver badges1010 bronze badges
$endgroup$
0
địa chỉ cửa hàng a phản hồi |

2 Answers 2


Sorted by: Reset to default
Highest score (default) Date modified (newest first) Date created (oldest first)
4
$egingroup$
$abc*(LHS-RHS)=-bc^3+ac^3+2abc^2-3a^2c^2+b^3c-2a^2bc+2a^3c-ab^3+a^3b=ab(a^2-b^2)+bc(b^2-c^2)+ac(a-c)(2a-c) ge 0$

it is trivial when$a=b=c$, the = is hold.$implies LHS ge RHS$


share
Cite
Follow
edited Dec 8, 2013 at 6:12
answered Dec 8, 2013 at 3:41
*

chenbaichenbai
7,43311 gold badge1414 silver badges2626 bronze badges
$endgroup$
1
địa chỉ a bình luận |
2
$egingroup$
Another way lớn look at it would be:eginalignLHS &= frac(a - b)(a + b)c + frac(b - c)(b + c)a + fracc^2 + 2a^2b \&> (a - b) + (b - c) + fracc^2 + 2a^2b \&= a - c + fracc^2 + 2a^2b. endalignAnd RHS $= 2a - 2c + dfrac3cab$.

Bạn đang xem: Find the factors of a 2 b c b 2 c a c 2 a b 2b 2c

eginalign extSo, LHS > RHS &iff fracc^2 + 2a^2 - 3acb > a - c \&iff c^2 + 2a^2 - 3ac > ab - bc \&iff (a - c)^2 + a(a - c) > b(a - c) \&iff a - c + a > b \&iff 2a > b + cendalign

and this last inequality is true since $a > b > c$.


mô tả
Cite
Follow
edited Dec 8, 2013 at 5:53
*

Macavity
43.4k66 gold badges3434 silver badges6666 bronze badges
answered Dec 8, 2013 at 3:56
*

DeepSeaDeepSea
76.7k55 gold badges5454 silver badges100100 bronze badges
$endgroup$
1
địa chỉ cửa hàng a comment |

Your Answer


Thanks for contributing an answer lớn ccevents.vnematics Stack Exchange!

Please be sure lớn answer the question. Provide details & share your research!

But avoid

Asking for help, clarification, or responding lớn other answers.Making statements based on opinion; back them up with references or personal experience.

Xem thêm: Uống Vitamin C Mỗi Ngày Có Tốt Không, Uống Nhiều Có Nóng Không

Use ccevents.vnJax lớn format equations. ccevents.vnJax reference.

To learn more, see our tips on writing great answers.

Xem thêm: Ủ Bột Bánh Mì Trong Bao Lâu ? Cách Để Làm Cho Bột Nở Nhanh Nhất


Draft saved
Draft discarded

Sign up or log in


Sign up using Google
Sign up using Facebook
Sign up using e-mail and Password
Submit

Post as a guest


Name
email Required, but never shown


Post as a guest


Name
thư điện tử

Required, but never shown


Post Your Answer Discard

By clicking “Post Your Answer”, you agree lớn our terms of service, privacy policy & cookie policy


Not the answer you're looking for? Browse other questions tagged or ask your own question.
Featured on Meta
Related
8
Proving :$frac12ab^2+1+frac12bc^2+1+frac12ca^2+1ge1$
12
Prove $frac12a+2bc+1 + frac12b+2ca+1 + frac12c+2ab+1 ge 1$
0
$a;b;cin ccevents.vnbbR^+$ such that $abc=1$. Prove : $P=fracab2b+c+fracbc2c+a+fracca2a+bgeq 1$
1
Prove this inequality: $sumfrac1a^2sqrta^2+2abgefracsqrt3abc$
2
Prove that: $sumlimits_cyc fraca^2+2bc(b+c)^2geq sumlimits_cyc frac32fracab+c$
1
Extreme values of $frac(a+b+c)(2ab+2bc+2ca-a^2-b^2-c^2)abc$
0
Prove inequality $sum _cycfrac2absqrtc+3le 3$
0
Prove that $frac3a^3+7b^32a+3b+frac3b^3+7c^32b+3c+frac3c^3+7a^32c+3age 3left(a^2+b^2+c^2 ight)-left(ab+bc+ca ight)$
3
Proving $sum_cycsqrt<3>frac1a+frac2bc+a+2b+cleqfrac6abc$ for positive values such that $ab+bc+ca=3$
Hot Network Questions more hot questions

Question feed
Subscribe khổng lồ RSS
Question feed to lớn subscribe lớn this RSS feed, copy và paste this URL into your RSS reader.


ccevents.vnematics
Company
Stack Exchange Network
Site kiến thiết / biệu tượng công ty © 2022 Stack Exchange Inc; user contributions licensed under CC BY-SA. Rev2022.11.17.43039


Your privacy

By clicking “Accept all cookies”, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy.