THE SUM OF THE CUBES IS THE SQUARE OF THE SUM
I.H.: Assume that, for some $k in Bbb N$, $1^3 + 2^3 + ... + k^3 = (1 + 2 +...+ k)^2$.
Bạn đang xem: The sum of the cubes is the square of the sum
Want lớn show that $1^3 + 2^3 + ... + (k+1)^3 = (1 + 2 +...+ (k+1))^2$
$1^3 + 2^3 + ... + (k+1)^3$
$ = 1^3 + 2^3 + ... + k^3 + (k+1)^3$
$ = (1+2+...+k)^2 + (k+1)^3$ by I.H.
Xem thêm: Nguyên Nhân Thực Dân Pháp Xâm Lược Việt Nam, Những Biến Đổi Trong Đời Sống Chính Trị
Annnnd I"m stuck. Not sure how lớn proceed from here on.
Xem thêm: Một Người Có 10 Đôi Giày Khác Nhau Và Trong Lúc Đi Du Lịch Vội Vã Lấy Ngẫu Nhiên 4 Chiếc


HINT: You want that last expression to turn out lớn be $ig(1+2+ldots+k+(k+1)ig)^2$, so you want $(k+1)^3$ to be equal to lớn the difference
$$ig(1+2+ldots+k+(k+1)ig)^2-(1+2+ldots+k)^2;.$$
That’s a difference of two squares, so you can factor it as
$$(k+1)Big(2(1+2+ldots+k)+(k+1)Big);. ag1$$
To show that $(1)$ is just a fancy way of writing $(k+1)^3$, you need to show that
$$2(1+2+ldots+k)+(k+1)=(k+1)^2;.$$
Do you know a simpler expression for $1+2+ldots+k$?
(Once you get the computational details worked out, you can arrange them more neatly than this; I wrote this specifically to lớn suggest a way khổng lồ proceed from where you got stuck.)

Consider the case where $n = 1$. We have $1^3 = 1^2$. Now suppose $1^3 + 2^3 + 3^3 + cdots + n^3 = (1 + 2 + 3 + cdots + n)^2$ for some $n in ccevents.vnbb N$. Recall first that $displaystyle (1 + 2 + 3 + cdots + n) = fracn(n+1)2$ so we know $displaystyle 1^3 + 2^3 + 3^3 + cdots + n^3 = igg(fracn(n+1)2igg)^2$. Now consider $displaystyle 1^3 + 2^3 + 3^3 + cdots + n^3 + (n + 1)^3 = igg(fracn(n+1)2igg)^2 + (n+1)^3 = fracn^2 (n+1)^2 + 4(n+1)^34 = igg( frac(n+1)(n+2)2 igg)^2$. Hence, the statement holds for the $n + 1$ case. Thus by the principle of ccevents.vnematical induction $1^3 + 2^3 + 3^3 + cdots + n^3 = (1 + 2 + 3 + cdots + n)^2$ for each $n in ccevents.vnbb N$.

IMHO, this fact is a coincidence; a better approach is khổng lồ prove the closed-form formula for both. As we know
$$ 1 + 2 + cdots + k = frack(k+1)2 $$
the corresponding claim khổng lồ prove is
$$ 1^3 + 2^3 + cdots + k^3 = frack^2(k+1)^24 $$
Prove $ fracsqrt22 + fracsqrt34 + fracsqrt46 + cdots + fracsqrtn+12n > fracsqrtn2 $ by induction

Site kiến thiết / logo sản phẩm © 2022 Stack Exchange Inc; user contributions licensed under CC BY-SA. Rev2022.12.2.43073
Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange can store cookies on your device và disclose information in accordance with our Cookie Policy.